top of page

Total Synthesis, Structure Revision and Neuroprotective Effect of Hericenones C-H and Their Derivatives

 

Total Synthesis, Structure Revision and Neuroprotective Effect of Hericenones C-H and Their Derivatives

The first total syntheses of hericenones C-H and "putative 3-hydroxyhericenone F" were achieved. Highlights of the synthesis include the straightforward construction of the resorcinol core and the geranyl side chain, assembly of the natural product skeleton by sequential O-geranylation and a clay/zeolite-mediated O→C rearrangement reaction, as well as a biomimetic cyclization to form a variety of bicyclic natural hericenones and their congeners. The structure of the "putative 3-hydroxyhericenone F" was revised as the 5-exo cyclization product (named: hericenone Z) of epoxyhericenone C through in-depth analyses of the cyclization modes in addition to NMR spectroscopic studies. To gain insights into the biological functions of geranyl-resorcinols in H. erinaceus, potential neuroprotective effects against endoplasmic reticulum (ER) stress-dependent cell death were evaluated systematically to clarify a fundamental structure-activity relationship. Among the compounds assayed, the linoleate-containing hericenone analog, i.e. the regioisomer of hericene D, was found to possess the most potent neuroprotective effect against tunicamycin and thapsigargin-induced ER stress-dependent cell death.

bottom of page